skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bini, Enrico"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Reconciling the constraint of guaranteeing to always meet deadlines with the optimization objective of reducing waste of computing capacity lies at the heart of a large body of research on real-time systems. Most approaches to doing so require the application designer to specify a deeper characterization of the workload (and perhaps extensive profiling of its run-time behavior), which then enables shaping the resource assignment to the application. In practice, such approaches are weak as they load the designer with the heavy duty of a detailed workload characterization. We seek approaches for reducing the waste of computing resources for recurrent real-time workloads in the absence of such additional characterization, by monitoring the minimal information that needs to be observable about the run-time behavior of a real-time system: its response time. We propose two resource control strategies to assign resources: one based on binary-exponential search and the other, on principles of control. Both approaches are compared against the clairvoyant scenario in which the average/typical behavior is known. Via an extensive simulation, we show that both techniques are useful approaches to reducing resource computation while meeting hard deadlines. 
    more » « less